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ABSTRACT

Numerical computations have been performed to
investigate the interaction of two counter-rotating vortices with
a free surface in a viscous, incompressible fluid 'here the
motion is considered two-dimensional and laminar. The
decaying vortices deform the free surface during their
approach and they can display the phenomenon of
"rebounding.- The numerical scheme is based on the
Navier-Stokes equations and uses bcundary-fitted coordinates
to accommodate the locally high vorticity of the moving
vortices and the nonlinear deformation of the free surface.

AI)MINISTRATIVE INFORMATION

This project was supported by the Office of the Chief of Naval
Research, and administered by Dr. Edwin P. Rood, Fluid Dynamics Program
(11321:) under ONR Contract No. N0001489-WX-24020.

INTRODUCTION
Two countcr-rotatina vortices in a two-dimensional viscous fluid

approach through self-induction a free surface and interact with it. The fluid is
considered incompressible and the laminar flow transient, with the fluid
ultimately coming to rest. This scenario may be envisioned as an
approximation to a pair of vortex filaments in the far wake of a slowly moving
body under water.

Various models of different relevance to this problem can be found in
the literature. The classical Lamb solution describes the potential flow
gencrated by a pair of counter-rotating point vortices approaching or leaving a
straight boundary. The paths of the vortices are given by

x 2 +Y 2 = 4X2v 2  (1)

in a Cartesian coordinate system (x, Y) with the unit distance between the two
vortices far away from the boundary.' The behavior of a pair of vortices with
an elliptic core was studied by Saffman. 2

In a viscous fluid an additional boundary condition must be specified for
the tangential vclocity component. Under nonslip, vorticity of opposite sign to
the approaching vortices will be generated, and the paths will be different from
that described by Eq. (1). Flow separation can occur at the boundary with the
subsequent development of secondary vortices. The primary vortices will turn
away from the boundary, a phenomenon that is called "rebounding". 3 4 A
numerical computation of the boundary layer at the wall was performed by
Ersoy and Walker.'

Rebounding was also observed experimentally by Barker and Crow4 at a
water surface. No information, however, was given on the shape of' the
surface. The vortices were gcncrated by a moving and then abruptly retractel
plate in a water tank. l)ifferent methods of vortex generation were ised by
Sarpkaya and Ilcndcrson and by Willinarth et al. 1,o stuldiCd he



disturbance of the water surface in three dimensions by the steady movement
of a hydrofoil and by counter-rotating flaps, respectively.

A numerical approach was used by Sarpkaya et al., s Tclstc.
arcus, and Willmarth et al. 7 for two-dimensional potential flow with two

counter-rotating- vortices approaching a nonlinear free surface.

The corresponding viscous problem was tackled by Peace and Riley l

for a plane surface with either a nonslip or a perfect-slip condition. For the
initial flow development they used a viscous inner solution and an inviscid
outer solutitn. After ti::i initial phasc, a finite-diffcrence scheme for the
Navicr-Stkc, cC1i atlions was applied.

In tIIis report the viscous-flow problem is solved for ', nonlinear free
suIrfacc wiiclh produces vorticity according to the formula: Vorticity equals two
tifmes curvalturc times taiigciitial velocity at the free surface. A finite-
diffec rence schenc is used for the entire time span during which the vorticCs
approach the frec surface.

STATIKMIN'T OF TIH' PROBLEM

A pair of vortices of equal strength ;: but opposite sign, a distance a
apart, approaches through self-induction an initially undisturbed free surface at
V - ()in the ('artesian coordinate system (x', y') (Fig. 1). With the
correspicding velocity components u' and t' the time-dependcnt flow ficd of
the inconprcssiblc Newtonian fluid is described by

011__1 O#' v - Zy' + &') (2)

,,t' _Ai' " p " x- + d )-g (3)

it' Ox v' OY '

- + (4)
O7x' U"

with t'. p', p). v. and g the time, total pressure, density, kinematic viscosity,
and constant of gravity, respectively.

TIhe free surface is dlescribed by y'= Y'(x', t') and is part of thle

solution. On this free surface the boundary conditions are
()Y , dY', U- (5)
it' dx' '

• • | |



, u', OY' A u' )'
-P x-- + /(,-A' + .. =0i (6)

a u' I" OY' o 0(p'- 2pu-) + p( + -" =' (7)
OY' jYw Ox' Ox'

Surface tension is neglected. The other boundary conditions arc

Y,= -x " =' 0 .p'= ±xP.. (8)

.x' U . -:',z< v' < Y' ' 0.u'= 0. i --  (9)
01' Ox'

X ' Y O" ( '- ,= 0 OX = 0>> (19)

. = -, --, < Y). -0 i' = 1 = (0 ,P= -pwv (10)

Since the how field is symmetric about the line x' U. only the hall
plane x' -- 0 with one vortex at x' = .', and Y' = Y, is considered (Fi,. 1).

The following assumptions are made for the initial conditions at t' I'

1. The free surface is undisturbed.

2. A point vortex with strength K, at the position x' = .c, and y' iS
introduced whose flow field is irrotational and is described in the
quadrant x' > 0, ' < 0 by

(7' - 7' )(7' + ' )6' + i _' = -it,- log_ V_(1
(7' - 7'v)(-' + c'v)

where Z' = x' +iy' and O' and .!,' are the potential function and the stream
function, respectively.

3. The analytic solution (11) of the flow field does not satisfy the boundary
condition (7). This inconsistency has only a small numerical effect on
the first few time steps.

4. Since the point vortex represents a singularity with infinite vorticity in the
flow field, it is practical to assume a certain decay of the point vortex to
accommodate it for a finite-difference grid. If this decay is confined to a
local area about the center of the vortex so that there is no appreciable
effect on the second vortex, that is, on the symmetry line (or on the free
surface), the Hamel-Oseen solution can be applied: 11. 12

= -[1 - ( - (12)
r 4v~t'- 'O)

with 1,2= V12 + V- and r'2  (x'-.x') 2 + ( Y.'-)

It is convenient to introduce the following dimension less quantities:

3



with- I1 thle initial decpth of the vortices, V( the initial t ranslatijonal veloc ity Of

the -vortex pair (it mnay be mentioned that this scaling makes the nit distance
inl F+ (1I) only approximate, that is. 0.99), and P) the scaled] dynaminic pressn re.
'[he (lirnension less flow parameters are the I roulde and thle Reynolds niumlbers

I'?- and Re, respectively:

Fr 4  14

Nh rcovcer, the Iin nite domain of lit Co~ral Jon is apprli)XIIImated by aI 11nite
domin ft r inie eal reasons. Also, the inertial te rills are expressed inl

con e r' ato rm. [ethle initial-boundary value prob~lemi is delined by

LV I~~x Rc x V - -- (~+ .(3

WJ) I

- -~ - = ) .(17)

I'' o

xvithP th 'loi ony e'nitln+

(J) - f 2  Re OxA "hx Re )Y J v

(I ~ ~-- +'r -7~--) (-'- )- =O() . (20)

v .c - 1 )I'= 0 , 11, v: obtaied by 2nd -order extrapolationl

along coordinate ine into the interior (21)
Z7'

A r( n;< Y 70 a~rU. c (22)

x ~ ~ -YA . : . 1 P () . it, r Obtained by 2nd-orde r

extrapolation alonn', coordinate line Into th( interior .(23)

'[Ie iniia 111,dConditions at t f1 are:



Position of vortex: x. = 1/2, ' -6.

The flow field is irrotational and, according to 1q. (11),

(z - zv)(z + zj6 + i(= -i log _ (24)

except for the vicinity of the vortex center with the circular boundary r:

1 r:Re
i -- I[I -ep(-- r 2 I < (5

r 4 t, - to (5

For a certain rl,, which is determined by the permissible error, t1 , can
be computed and is for the examples in this report If, = 0.125 with to = 0.
This tj, is then chosen as the start of tile computation: I = tl.- 0 with
to -0.125.

NUMERICAL TECHNIQUE

The numcrical solution of the initial-boundary value problem, as
expressed inl Eqs. (15) through (25), is carried out with the aid of a finite-
difference technique and boundary-fitted coordinates.

Boundary-fitted coordinate transformation

Fig. lb is a schematic drawing of how the physical Fpace is mapped onto
the computational domain. Only the coordinate lines which form the
boundaries of the two regions are drawn. The coordinate lines in physical
space are mapped onto a uniformly spaced Cartesian mesh with a unit mesh
spacing in each coordinate direction.

As the flow field evolves in time, the grid in physical space will move
and its coordinate lines will be attracted to regions of high flow gradients
through the use of an adaptive-grid technique to be discussed later. However,
the (artesian grid in computational space always remains fixed and unif,,rm.
This is the major advantage of using a mapping.

For Re 10, Fr 1.125, the physical region extends from x = 0 to
o.0 and from v = -6.0 to the free surface which is initially at v = 0. This
physical region is mapped onto a computational space with a (artesian grid
consisting of 91 equally-spaced points in both the '- and il- .-oordinate
directions. For the two Re = 50 cases, the physical regions extend from
x = 0 to 10.8 and from v = -6.0 to the free surface. These physical regions
are mapped onto a computational space with a Cartesian grid consisting of 157
points in the c--coordinate direction and 135 points ill the ti-coordinate
direction. Figs. 2 through 4 display representative physical-space grids at
various times.

ii l!



The curvilinear coordinates ( , j) are obtained as solutions of the two
elliptic partial differential equations with the physical-space coordinates (x, Y)
as indcpendcnt variables

,+ Y = (, - ,) P* (+, ,0) , (26)

Itr.r + tivy (=,2 + qI) Q* q) (27)

I lowever. since all calculations are to be lone in the rectangular computational
domain, these two elliptic partial differential equations are transformed by
inicrchangingz the dependent and independent variables. As a result, the
physical-space coordinates (x, v) are solved in terms of the computational
space coordinates 'C', 11) at each time step. L The transformation yields, with
partial derivatives now symbolized by subscripts for simplicity,

11x - 23x ., + ",-x,,i + , l'x + I Q*x, = 0 (28)

-- 2.?3 ,  + ,i, + P* i' + -Q )' = , ) (29)

wilh

3= x x, + .. 3', (30)
) "1

-;= X + y

For later use, the Jacobian of the transformation is given by

J = x 0', - -t',

The form of the control functions P* and Q* for the coordinate system
will be presented when adaptive-grid generation is discussed.

[he Navier-Stokes equations (15) and (16) are in curvilinear coordinates

u, -. v,,u - y u ,,)/J - '(XEu,, -x,,u)/J

+ 1j,',(u12 ) - y.(U 2 ),j/J + .X(j'), I- x,,(u',,)d/J + (yfP - y'P,1)/J

-= (,u. - 2.'3u , + "iurI + c*u,, + r*zj)/ReJ2 , (31)

III- X,(>, 1  - ,1' 1)/I- y,(x tI,, - x,11, )/J

+ 1>,(ul')E - >' (ul'),,I/J + [x(v' 2 ),, - x,1 (' 2 ) j/J + (XEP,, - xl/

(m, - 23v ,, + -11M + a7i',j + 7*1')/ReJ2 . (32)

where

6



1T -;2 ( i I:C(* i (33)

The 1 imle-dcrivit ives have also been transfor med Ii these equations.
THuls, time derivatives in I cis. (31) and (32) are taken with 1: and q fixed, while
those InII 'is. ( 15) an'! 116),er taken with x and Y fixed. T his i ranist'Ormat lot)
of timei-derivatives allows thle co mputation to he dlone onl a tixed grid in the
trans brined plane even though the physical g~rid lis ill motion1 duLc to thle
movemient of' the free sur-face. T he. te rms involving x, and v, Ii ILks. (31 ) and
(32) hence occu r because of thle min g physical-space grid. This procedure
was adopted from Shanks.' 1 1

Ihei Cont inulity equation (17) is replaced by aIi equat ion with pselido -
Compcsiil it v fo r unm icallv conservinu mass at each physical time step:

C0111pi-cis 1 Jier

+~ + 0 ) t (34)

In tis met hod pseudo-time steps for pseudo-tim in7 are required to
satisfy V] . ( 17) at each physical time step V . T[his approach canl be viewed as
an lie ra impoeuei suoI -e7to calculate each physica~l timel step - J
I he Method has been successfully applied reccntly by several researchers1;> It

to comnpute thle iwo-dim-ensional, incompressible Navier-S!Dkes equattionIs tor
tie-dependent flow's. 'Ili is technique was first introdceLCd by Chorin 17 tor
obtainlinlI soIlutionls to thle steady-state, incompressible Navier-Stokes equations
and is characteriicd by the existence of mioving- pseudo-pressure waves. They
die out Ii pscudlo-t ime leaving~ a dive ruence-frce velocity field at steady state.
'The method of employinga artificial compressibility has been used successfully
by many authors for computing steady-state incompressible Navier-Stokes
solutious (see, for example, Kwak ct al. 18).

'[he, parameter Pcanl assume values between zero and tenl but is usually
chosen to be one, and so it is in the present work. '[hen. Eq. (34) is in the
transformed computational space

OP + 1 0~, -Q, -x,' (35)

'The movement of the grid (luringq. the pseudo-time step - r is so small
that thle terms involvinu x, and v. have been neglected Ii Eq. (35).

'1he kinematic boundary condition (18) at thc free surface is for
coordinates in Computational space

OYc
'=Y: (- v---- (316)

(it

'The subscript x refers to thle physical space gridl points at the free
su rface that are not permittedl to move in thle x----irection. All equivalent
klileCmn,t le COM)J11t in 10 I, q (36) is, gviv i thle tollowing equation iii which the
Or id po iil s at thle free surface are allowed to move inl the x -direct ion:

v xxY: = v - ~(37)

7



Both equivalent kinematic conditions (36) and (37), of course, pcrmit
the -rid points at the free surface in physical space to move in the
V -direction.

'he free surface in physical space maps onto a constant q-line in

computational spacc, as seen in Fig. lb. [or a constant il-line, the frce

surface conditions (19) and (20), written in computational-space coordinates,
arc

Y u,, -iii -Jv - e.Jv;(1 - Y (38)

IJit; + .l: 4- ReJx (P - -Y (39)

In addition to the kinematic condition for Y at the free surface. three

conditions are ncedcd to determine P, u, and r at the free surface. Condition
(38) is retaincd to compute i whereas a linear cumbination of Eqs. (38) and

(319) is derived that yields the condition for P. The velocity component 1, is
then obtained from the continuity equation to conserve mass at the free
surface. The conditions for P and ' at the free surface v Y are

Y,'r __J V.- I,, -)1,1) - - 1 c + ' + --( x (40)

Fr2'ReJ '" - -t uo) (0

',3IQ- -'U', +X ,V' -X,'tV = 0 (41)

At x = 0, the symmetry conditions (22), after being written in
computational-space coordinates, are used to compute v from the Navier-
Stokes equation (32) and P from Eq. (35). The y-coordinate at x = 0 is
obtained from Eq. (29). Of course, u and x are always zero on the symmetry
line x = 0, including the symmetry point at the free surface. At this special
point, Y, P, and I' are obtained from Eqs. (36), (40), and (41), respectively,
with the symmetry conditions (22) built in.

The boundary conditions (21) and (23) are used with second-order
extiapolations along interior coordinate lines in computational space to obtain
a and v at these boundaries. For instance, at y = -YL, u is obtained from
values of u at the two grid points on a constant -line closest to the boundary.

Similar considerations apply to v and to the boundary of Eq. (23), except that
constant il-lines are used there.

Adaptive gridding is used in this report by giving a special form to the
coordinatc--rytem control functions P*. Q*, which appear in Eqs. (28), (29),

(31), and (32). The basic idea is to use the equi-distribution of a weight

function along arclength elements in the physical-space grid.' 9 These equi-

distribution laws for weight functions t, and iv2 along arclength elements on
constant ;- and c-lines, respectively, are

(x2 + V) 2 i = const , (42)

+1 ) 2( + )'7;) " ic-, = ronst .(43)

8



Weight functions are usually taken to be functions of the flow gradient.
and they are chosen here to be

= (1 +B 2 1 (I q) I) I ±A'2 q. (44)

(1 +B 2 1 q I ,(
2t3/ 1 (V + (1 -q,, (45)

where q u 2 + 2 .

One observes from Eqs. (42) through (45) that the spacing of the
arclength between grid points in physical space will be small if the gradient of
the local flow speed q is high. The grid adapts to the locally high flow gradient.
If the local flow gradient is zero, uniform spacing will occur.

Anderson 9 has shown that if P* and Q* have the form

P*- (w,) ( Q'- , (46)
19 1 I,

the mesh-generating equations (28) and (29) approximate the equi-distribution
laws (42) and (43), respectively. In the computations, coefficients C1 and C,
are actually added to the right sides of Eq. (46). C1 and C,, which arc
constant in time but vary spatially, are the initial I* and Q*, respectively, for
the initial, non-uniform Cartesian grid in physical space obtained from the
INMESH program.20 This grid is used at the very start of the flow
computation at t = 0 with adaptive gridding then applied immediately.

On the symmetry line x = 0, the weight function w2 is given in the

simpler form

1w2 = 1 + Av, (47)

Only Q* in Eq. (46) and Eq. (47) are required in conjunction with Eqs.
(29) and (32) to compute y and v, respectively, on the symmetry line x = 0.

Except for the symmetry line, adaptive gridding is used only in the
interior of the flow region.

Finite-Difference Technique

All spatial derivatives, including one-sided derivatives at the boundaries,
are replaced by finite-difference operators of second order in the
computational space. Thus, it remains to discuss only the implicit time-
differencing procedure for the initial-boundary value problem that consists of
Eqs. (21) through (25), (28) through (33), (35), (36) or (37), (38), (40), (41).
and (46). The weight functions in Eq. (46) are provided by Eqs. (44), (45) or
(47).

The dynamic pressure field P at t = t, = 0 is obtained by solving a
Poisson equation for P in terms of the initial velocity field, Eqs. (24) and (25).
This is the only time a Poisson equation for 1) is used.

9



The folowing equations represent the implicit time differencing

procedure for advancing the flow solution (P, u, v, x, , v) in the interior for the
physical time step t + '  t" from physical tirme level 17 to level / + I by

nsiig pseudo-time steps ._.S = .t'

x 11+1. ?11+ -= (x + l  ,111+ A ' "1+1 P 0 ") , (48)

.. .. , 
' ) ) (49)

i),,1 .+1 Ilm _ J,,l .,,, ~ f)f+.i~--I(01) n +1- _ .I - pi. ,,+15

r, (51)

= r +--...'+ (52)

lI qs. (48) through (52) are obtaincd from Fiqs. (28). (29), (35), (31), and
(32), respectively. Superscripts refer to time levels. '[he nonlinear funcions
gl and g2 in lqs. (48) and (49) are functions of the latest updated values
XI+.,. + 1,,+., +1 at the neighboring points after using spatial differencing.
In FIqs. (51) and (52) the time derivatives for u and i' are oil the left side of the
equations while all remaining terms of Eqs. (31) and (32) (in difference form)
are included in the functions r, and r, on the right side of Eqs. (51) and (52).
Physical time derivatives occur in Eqs. (31), (32), (36) or (37) and arc
differenced to first order according to

pi- f,+. ,,+I _-n f(53)

where f stands for u, v, x, ', or Y. All spatial derivatives of the initial-
boundary value problem, after second-order finite differencii, are evaluated
by using the latest available updated values of the implicit scheme.

The flow solution at the new physical time level n + I is obtained when
the convergence criteria

jf,,+i. ,+ > , (54)

f,,+t. ,,,+I f,,+l. Il
r + + fl + <, (55)

fl + 1, ?n

are satisfied for f u, v, x, and v at all grid points of the computational
space. Then, f,,+- = f,,+' ~ In Eqs. (54) and (55) (1 and ,, are small
specified parameters.

Rogers and Kwak s used the implicit scheme of E-qs. (50) through (52)
for flow problems with fixed geometry. Fi.qs. (51) and (52) can be viewed as an
Euler backward scheme for the Navier-Stokes equations. The convergcnce of
I' in p:'cudo-tilme ensures conservation of mass at each physical time step asl
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discussed earlier. This process is also seen from Eq. (50).

Rovers and Kwak t 5 used upwind differencing for the convective terms
of Eqs. (51) and (52) which is necessary for high Reynolds numbers. In this
work a central difference operator was applied.

A "four-color" scheme (Fig. Ic) is used in the interior of the
computational space for Eqs. (48) and (49) and for Eqs. (50) through (52) in
obtaining the latest values with superscripts n + 1, m + I (updates) for x, y
and P, u. and v, respectively. The use of such a scheme, which can be
vcetorizcd, resulted in an order of magnitudc increase in computer speed on
the Cray-XMP 24 on which the computations were performed.

The "four-color" scheme, as applied to Eqs. (50) through (52), for
example, consists of obtaining updates for P, u, v simultaneously at all the o
points, then at all the points, the x points, and the A points, in that order.
The latest available updates are used in this process.

The computational cycle for one complete pseudo-time step iteration
consists of (a) applying the "four-color" scheme to .qs. (48) and (49) followed
by obtaining the latest updates for v at successive points along the symmetry
boundary Eq. (22) from Eq. (49); (b) applying the "four-color" scheme to
Eqs. (50) through (52); (c) obtaining updates for P and I' at successive points
along the symmetry boundary Eq. (22) from Eqs. (50) and (52), respectively;
(d) obtaining updates for P, u, v, and Y at successive points along the free
surface from Eqs. (40), (38), (41), and (36), respectively; and (c) obtainig
updates for u and v at successive points, first along the boundary x = x1 from
Eq. (23) and then along the boundary y =YL from Eq. (21).

At the completion of this computational cycle, after the latest updates
for x, v, u, and v, satisfy the convergence criteria of Eqs. (54) and (55) at all
points, these updates are the solution at the new time level n + 1. If the
convergence criteria are not met, cycle (a) through (e) is repeated until they
are met.

In this report a spatially varying pseudo-time step Ar is used that can be
interpreted as an attempt to use a more uniform pseudo-Courant number
throughout the field.2 1  A spacially varying Ar can be effective for physical-
grid spacings that vary from very fine to very coarse grids, a situation which
particularly occurs for the two Re = 50 cases. Pulliam and Steger 21 mention
that a spatially varying physical-time step _A has been used by a number of
researchers to obtain solutions of steady-state compressible fluid flows.
Gorski2 2 applies a spatially varying pseudo-time step for obtaining solutions of
steady-state incompressible fluid flows. It appears logical, therefore, that in
this study, which obtains the solution of a "steady-state" incompressible fluid
flow at each physical time step _N by marching through pseudo-time steps .sT,
a spatially varying pseudo-time step A7 be used. This time step, used in E~q.
(50), is

ArT - (56)
I
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and scales directly with tle area and aspect ratio of a physical grid cell (IJ is
the area of a cell in physical space). The value of the parameter ATref will be
given later.

The form of Eq. (56), given by Hodge,23 is borrowed from Thompson
and Shanks (Appendix D) 13 where it appears somewhat disguised in a
discussion relating the artificial-compressibility procedure and a Poisson
equation for the pressure.

Thompson and Shanks, 13 who solved the time-dependent, two-
dimensional Navier-Stokes equations for the viscous fluid flow about a
hydrofoil at a free surface, used artificial compressibility to obtain the
pressure at the free surface and the hydrofoil, and they employed a Poisson
equation for the pressure in the interior of the flow region. In the present
report, in contrast, artificial compressibility is used to obtain the pressure in
the interior of the flow region, and boundary conditions for the pressure are
used to obtain the pr _ssure at the free surface and other boundaries.

For the case Re = 50, Fr = 0.356 only, a free surface instability
developed at t = 3.52. Starting at this time, upon convergence at each new
physical time (level n + 1), the values for f = u, v, P, Y at the free surface
point i are finally given in terms of their corresponding converged values f:

( j +2 -2 ±4(j ,+ -) + 10/) (57)

This filtering process was developed by Shapiro 24 and was used by
Longuet-Higgins and Cokelet,2 5 among others, to eliminate numerical
instability at the free surface. For Re = 50, Fr = 0.356, filtering was applied
at the free surface from x = 1.0 to 2.0 during the time t = 3.52 to 4.75 and
from x = 1.0 to 2.94 during the time t = 4.75 to 9.52.

The kinematic condition (36) was used for all cases except Re = 50,
Fr = 1.125 from t = 2.40 to 4.06. During that time Eq. (37) was used because
of the need to crowd more free-surface points in the x-direction to resolve the
steep wave generated for this case.

The relaxation factors were chosen to be 1.85 for Eqs. (48) and (49) and
1.0 for Eqs. (51) and (52). The parameters ( 1 , ( 2 )= (0.01, 0.01) were
applied to Eqs. (48) and (49) and (q, ( 2) = (0.03, 0.01) to Eqs. (51) and (52).

The adaptive grid parameters (A, B)= (2.0, 2.0) were used for all
cases except Re = 50, Fr = 1.125 from t = 3.10 to 4.06. During this time,
(A, B) were gradually increased to (3.8, 3.8).

For the two Re = 50 cases, the parameters (At, Arref) were gradually
increased from (10-8, 460.8) to (0.0003, 2560) during the time t = 0 to 0.019.
For these two cases, the parameters (At, A7rf)= (0.0003, 2560) did not
change for the remainder of their time histories, except that At was cut back
to 0.00015 for Fr = 0.356 from t = 3.52 to 5.02 and that the parameter set
(0.0003, 2560) for Fr = 1.125 was reduced to (0.000025, 1920) from t = 4.0 to
4.06. The total time span extends to t = 9.52 and t = 4.06 for Fr = 0.356 and
Fr = 1.125, respectively.
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For Re = 10, Fr -- 1.125, lie spatially varying pseudo-time step Ar was
not used because the grid in physical space remained more uniform in time
than it did in the other cases, since the flow gradients are smaller for the ease
Re = 10 than for the othcr czascs. lor Re = 10 the parameters (\t, AT) were
gradil ly increased from (I 0 - 4. 1.6) to (0.00015. 8.0) during the time I = 0 to
0.007. The parameters (0.1)0015, 8.0) were then retained until the end at

9. 04.

lor the two Re r 50 cascs a maximmn i of three to eight pseudo-lime

step literations per physical time step near t = 0 were needed. Iterati(,:s for
1,t - 0.350 then gradually leveled offf to one to two iterations per physical-t ime
step l)for the remainder of the tine. lteralins for Fr= 1.125 leveled off to
two but then incr-eased to two to live iterations per physical-tilne s'tep as the
wave steepened. 'he Re -- 10 Case required fewer iterations per physical-time
step than the Re -- 50 cases.

Mass conservation \vas monitored in tile flow field for the three flow
cases. The details are here omitted.

The computer time used on the (rav-XMl 24 for Re 50. Fr = 0.356
and Re -- 50), 1. -- 1.125. which were run until t = 9.52 and 4.06.
respectively, were approximatcly 140 and 65 minutes, respectively. Re = 1)
which was run until t = 9.04. needed 75 minutes.

To build confidence in the numerical method used, the case of
Re = 50, Fr = 0.356 was also computed with a grid which had four times the
numb3er of cells of the original grid, that is. (313X269) points. The results,
which are discussed later, agrce quite well ,ith those of the coarser grid of
(157X 135) points.

The relationship among .. 7-,.,,f, t., the fineness of the grid, and the
convergence criteria still must be explored for maximum efficiency and
accuracy of the numerical metlhod used in this work.

An auxiliary quaitity of interest in the generation of vorticity at the free
surface is the distrihution of surface vorticity &. For a given free surface
Y Y(x, ) and surface velocity components u, and v, the surface vorticity is

givenii by the well-known formula "twice the surface curvature times tangential
vclocity", or in this report's notation

2Y, (1 + )(, + r,,.) (58)

InI co mputational space. Y, and Y, r must be replaced by

YY

Y Y x
S . Y0 2 9)x. (.v2)

Numerically, an alternative way of computing call bc chosen by the
definition of .of : _ '- / -- i'u/,?Y itself. Since iII this case inlformation fro in
the interior points is incorporated into the numerical schcnc, the rcsilt
appcars more accurate Ihaii with thc usc of 1:q. (58) in which Y". appears, a
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quantity difficult to obtain with sufficient accuracy. InI Fig. 5 the discrepancy
between the two methods is shown for the special case Re = 50, Fr = 0.356
at t = 5.02 for both the coarser and the finer grids. A decision as to which
formula is more accurate cannot yet be made.

RESULTS

Numerical computations were performed for Re = 10 and 50,
Fr = 1.125, and for Re = 50, Fr= 0.356 from the initial position
x,. =0.5, v = -( = -3. The Froude numbers were selected to coincide with
those of Sarpkaya ct al.' and 1' elste.9

In the case of Re = 10, Fr = 1.125 diffusion dominates convection so
much (the fluid is so "viscous") that the maximum elevation 3' = 0.307 at
t= 4.0 caused by the vortex motion is small compared to the corresponding
inviscid-flow case of Sarpkaya et al. s and Telste. 9 The free surface returns,
after the maximum elevation has been reached, monotonically to the state at
rest. Fig. 6 displays the vector field of the velocity at t = 4.0, and Figs. 7 and
8 show equi- vorticity lines at t = 4.48 and t = 9.04. The vorticity distribution
on the free surface is seen in Fig. 9. The data for the positions of the vortex
are recorded in Table 1. The path is plotted in Fig. 10 and compared with the
solution for the potential flow with a flat surface, Eq. (1). In viscous flow, tile
center of the vortex can be defined either as the place of extremal vorticity (in
this case of minimum vorticity) or as the center of the whirl (center of the
nested streamlines). The latter definition, however, depends on the choice of
the reference frame. In Fig. 6 the reference frame is fixed to the undisturbed
free surface and the vortex is moving relative to this frame. If the reference
frame is fixed to the vortex center, tile position of the center of the whirl
(moving relative to the reference frame) shifts closer to that of the minimum
vorticity (see next paragraph for an example). Even then, these two locations
do not necessarily coincide as the analytical solution for a decaying vortex
dipole demonstrates.26 Fig. 10 shows that the path of the point of minimum
vorticity is closer to the axis of symmetry and closer to the free surface than
the path of the whirl's center. The phenomenon of "rebounding" is observed
in both cases, that is, the turning away of the vortex from the free surface.
File elevated surface returns to the state at rest without oscillation. At the last
computed time t = 9.04, I I is 0.2383, diminished from the initial value
I "'in I = 39.43. In Fig. 11 1L-'mj, I is plotted against time. The curve follows
closely the l/t-decay according to the Hamel-Oseen solution, Eq. (25),
indicating that numerical diffusion is minimal.

For Re = 50, Fr = 1.125 the situation is quite different. The surface
elevations at three different times in Figs. 12 through 16 reveal a much
stronger effect of the ascending vortex, and a local depression of the surface,
called a "scar" by Sarpkaya and Htenderson, 6 is now visible that was not
apparent in the case of Re = 10, Fr = 1.125. The surface elevations for
Re = 50, Fr = 1.125 are closer to the curves for the inviscid fluid. In fact,
Figs. 12, 15, and 16 may be compared with Figs. 5a, 5c, and 5e of Sarpkaya et
al.8 The dimensionless time T in their work is related to this report's time t by
T = t - 3. Although it takes a little longer for the viscous fluid flow to reach
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states comparable to those of the inviscid fluid, the qualitative agreement
between the two cases is good with regard to free-surface height at the
centerlinc and the locations of whirl center and scar. The same statement can
be made about Telste's data. 9 They can be compared with those in this
report, if one considers the relation between the dimensionless time tTelse and
t to be tf;.te = 2r(t + 2). The Froude numbers are related by /r- --e,, = 2,7Fr.

In Figs. 13 and 14 a section of the flow field of Fig. 12 is compared for
two reference frames. The reference frame fixed to the center of the whirl
(Fig. 14) shows that the center is shifted to the left, but the new center does
not reach the location of I _*Mi. l he equi-vorticity lines are displayed in Figs.
17 through 19. The merger of the vorticity field of the vortex with that at tlhe
free surface is clearly visible. The vorticity distribution on the free surface is
given in Fig. 20. The path of the vortex center is plotted in Fig. 21 and the
positions of the vortex center put together in Table 2. The movement of the
vortex is straight up and no deflection due to the free surface is observed. The
decrease of with time is pivcn in Fig. 22 and follows the i/t-law. '[he
computations were stopped at t 4,06 when convergence thereafter could not
be obtained for the g'rid used. l lowevcr, a negative horizontal velocity
component at the free surface indicates that the trend toward a constriction is
present, as it is in the case of the inviscid fluid. The mounded shape of the
free surface around the symmetry line was still rising when the computation
was terminated.

A comparison of Fig. 20 with lig. 22 shows that the surface vorticity
becomes larger than i ] of the vortex from approximately t = 4 oin. This
is an interesfing situation because it means that the vorticity concentration of
the flow-generating vortices is less than the surface vorticity generated by the
vortices. The statement contrasts the result obtained for the flat slip-surface
by Peace and Riley, 1 that the flat surface is always a sink of positive vorticity
(or a source of negative vorticity) because _'. = 0.

The final case computed was Re 50, Fr = 0.356. The lower Froude
number means less disturbance of the free surface by the vortex motion. This
smaller disturbance is observed in Figs. 23 through 25. On the centerline the
free surface reaches a maximum elevation, then falls to a minimum, climbs
again to a maximum, and comes to the state at rest. In other words, the free
surface oscillates. This oscillation is in contrast to the case olf
Re = 10, Fr = 1.125 that showed only an up and down movement of the free
surface at the center line. The scar is now pronounced, with the high surface
curvature that results in high surface vorticity (Figs. 26 through 31). From
this concentration of vorticity a secondary vortex develops which becomes
visible at t = 5.02 in front of the primary vortex (Fig. 28). This figure was
also computed with the finer (313X269) grid in Fig. 29. The two figurcs agree
well except for the low-level positive values. A little later, at t = 6.52, the
secondary vortex has placed itself directly in front of the primary vortex
farther away from the free surface (Fig. 30). The computations were
continued without any numerical difficulties and were stopped at t = 9.52. In
Fig. 32 the frce-surfacc vorticity is displayed, and in Fig. 33 the path of the
vortex center. In Table 3 the position data are recorded. In contrast to the
previous case of Re = 50, Fr - 1.125, the path of the vortex center now
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shows a reb~ound from the free surface. The decrease of' jmIn with time is
shown Ii Fig. 34. The agreement between the curves inI J'hs. 22 anld 34 is very
good, and the 1/t-law is observed. TIhis meansththedcyotevre-

center vorticity is not influenced, or barely so, by thle presence of the free
surface. I Jere a tzin.te data are comparedl with those for the finer orid, and
alIMOSt no distinction canl be observed.

'[he velocity field inI FIg. 23 canl be compared with that for anl invisc id
fluid as shown by 'Ielste.9 TIhe scars arc less pointed inI the ease of' a vi'scous
1f1uid thanl in1 thle case of an inviscid one, and the position of the vortex center
is lower inI the viscous-flow case than inI the inviscid-fluid one.

'['he in~f1Iluece of surface tension, the case of an obli~luc approach of a
vortex pair toward the free surface, and anl attempt to compute flows with
highcr Reynolds number will be treated inI a forthcoming paper.

AC KNOW LEIGM EAT

TIhe authors would like to thank R.M. Colemnan, 11.1. Ilaussling, and
L(.1'. Van I seltiiic for their assistance and suggecstionls.

16



I . Lamb. 11., "1 lydrodynamics." ])over, Newv York (6th cd. ) 1945.

2. Salffrnan , P.G ., [heli Approach of' a V'ortex Pair to a LPlanc Sn rfacc in
Inviscid Fluid.'' J. Fluid NMech., 92, 497 (1979).

3. H arvey, J.K. and F.J. Perry, "liow Field Produced by TIrailiiig Vortices
Ii thle Vicinity of* the Ground,"' A IAA J ., 9, 1659 (1971).

4. Barker., S .J. and S. C. (Crow. '''I 'he Motion of' 'Iwo-D imi'lisional Vortex
Pairs inI a Ground IA£fcct ,' J . Fluid Mch . , 82. 659 (1977).

5. 1 rsoy. S. and J...A. Walker, "Viscous Flow I nduiced byv Counter-
Rotating Vortices,'" Physics Of FlIliS, 28K 2687 (1985).

6. Sarpkaya, 'F. and D.O. H enderson , "S rf'ace I istuirhances (file to
T'radling~ Vortices,'" Naval 'Postg~raduate School Rep. NPIS-69-84-O14,
NMonterey, ('A, March 1984.

7. Willmarth, W.W.. G . 'Iryggvason , A. HI rsa, and 1). Yu, "V'ortex Pair
Generation and I nteract.ion Withi a F~ree Stirface.'' Physics of luiids A,

1170) (1989).

8. Sarpkaya. 'T.. J . I liiiitsky I1, and R .1 . Leceker. J1r.,. "Wake of a Vortex
Pair onl thle Free Surface,'' 17th Syinp. onl Naval H ydro dyinamlics, TIhe
I lamie, ilu. 29-Seip 2. 1988.

9. Idste. .1.G ., "Potential Flow About 'Two ('onitcr-Rt daIngV rti

Approachinug aI Free Sn rt'acc," .1. lld Mccli., 201, 259 (1989).

I (. Marcus, I).1.. "'[he Interact ion Between a Pai r of't COunte r-Rotat InI"
V"ort ices and a Free Boundlary,'' Pi) thesis, U niversity oIf (al i fornia at
Berkeley. 1988.

It . Peace. A .]. and N. Riley, "A Viscous Vortex Pair inI G rouind I 'lct,' -J.
luhid Mech., 129, 409 (1983).

12. 'Ting, L ., "Studies onl thle Motion and 1)ecay of' a Vortex Filament
Lecture Notes inI Physics 148, Springer-Verlag, 67 (1981).

13. Thompson, .1.1. anld S .P. Shanks, '"Numerical Solution of the Navie r-
Stokes Iquations for 2d1 Surface H ydrofoils,"' Mississippi State
University Rep. MSSU-FIRS-ASF-77-4, Feb. 1977.

14. Shanks, S. P., "Numerical Simulation of Viscous Flow about Submerged
Arbitrary I lydrolfoils using Non-orthogonal, Curvilinear ( oordinal es,"
PhI.D). lDissertation, Mississippi State Uiversity, Mississippi 1977.

15. Rogers, S.F. and 1). Kwak, "'An Upwind 1)iffecrencing Scheme For thle
'lime-Accurate Incomp)ressible Navier-Stokes I quations,. A IAA Paper
88-2583, 1988.

1 6. Merk Ic, ('.1.. and M . Athavale, 'l i e-A c ci rate t Jnsteady
Incompressible Flow AlIgorith ms Based onl Artificial C'oinpressibility.''
AIAA Paper 87-1137, 1987.

17



17. Chorin, A.J., "A Numerical Method for Solving Incompressible Viscous
Flow Problems," J. Comp. Phys., 2, 12 (1967).

18. Kwak, I)., J.L.C. Chang, S.P. Shanks, and S.R. Chakravarthy, "A
Three-Dimensional Incompressible Navier-Stokes Flow Solver Using
Primitive Variables," AIAA J. 24, 390 (1086).

19. D.A. Anderson, "Constructing "Adaptive Grids with Poisson Grid
Generators" in: Numerical Grid Generation in Computational Fluid
)ynamics, edited by J. tliiuser, C. Taylor. Pineridge Press, Swansea,

U.K., p. 125, 1986.

20. Coleman, R.M., "INMESLI: An Interactive Program for Numerical Grid
Generation," Report DITNSRDC-85/054, 1985.

21. Pulliam, T.tl. and J.l. Steger, "Recent Improvements in Efficiency,
Accuracy, and Convergence for Implicit Approximate Factorization
Algorithms," AIAA Paper 85-0360, 1985.

22. Gorski, J.3., "TVI) Solution of the Incompressible Navier-Stokes
Equations With an Implicit Multigrid Scheme," AIAA Paper 88-3699,
1988.

23. Hodge, J.K., "Numerical Solution of Incompressible Laminar Flow
about Arbitrary Bodies in Body-Fitted Curvilinear Coordinates," Ph.D.
Dissertation, Mississippi State University, Mississippi 1975.

24. Shapiro, R., "Linear Filtering." Math. Comp., 29, 1094 (1975).

25. I.onguet-Iligins, M.S. and L.). Cokelct, "The Deformation of Steep
Surface Waves. I. A Numerical Method of Computation," Proc. Roy.
Soc. London A 350, 1 (1976).

26. Lugt, II.J., "Multipolc )ecomposition of Solutions of the Vector
Diffusion Fluation," SIAM J. Appl. Math., 39, 264 (1980).

18



"I'abl hI

Posilions -. 1 of ,i and ccntcr of whirl is a Iunclion of Iimic I Itr
' - l I -r 1.125.

It 1 1.

1f7, Ci.F 4o7i'

C ~ ~ c 70i.~t4

7 (, 4 C-: XF U (
0.0 0. 50 --,.040

.'" 5 l.' O- .1
4 4

"
, -; - -:: 1 . 44 1.::

1. 5 1 '. - 1
4 .. 1 1 .12.52:

4.q 5.7 0 1-17144 1 4'

7.41 .4~ 4 4 W1

1' , . 'Ut':5 - 4.',Tho,5 1. 4- 1.;::
1,5 .3499&.O -1.44¢19 -', 1. ,:,

740 1.449:? -1 .599o ' 4'5
41.4907 -1.5:0 1.7

*.9'' 1.15 24 - 1.47T ' 1,57 ! ,

,,04 1 . 0130 - 1.43300. 1 .E .:'7

o.5Z I. 3499,!, -1.4 4-0{ 5 i :



"Tabl 2

Positions x, v of I and ccitcr of whirl as a function of time t for
Re 50. F/ 1. 12-

I Mll

t y x y

a. 0 oy 7 O .coi7 -. 992:0
- .017 '.{ .q ; , - '..

7 040 0. 5043, . ,1

*. ,-0 o. 50 7 - =419
.5, A 515- .45: 0.55 .5co

I . 000 .5 35 .05..7 0.5- -- . -,
0.40 0.-, -1.6196 0 . 62 -1.,4

So 0. 523-, -1 . 1672 0.65 -1 .19
2.401 0.56,04 -0.-926. 0 . 66 0O. 9 1
- .500 0.5-67 -0.8115 0.68 -0-

.40 0.5552 -0. -5t ,1 0.70 -0. 4,71
- 00 0.5705 -0 42 27 0. 71 46

u.5577 -0. :-185 0.70 -0.::

J 0.5751 - 0. 0802 . -0. t3

4. 000 0. 5798= -0. 4; O. &l: C). O
4. 05O 0.t":?0 -Go 4
4.060 0.05---C), C., -C 004 

20



Table 3

Positions X. v of <, il and cenier of' whirl as a I'uLictiof of* time I for
IRe = 50, Jr = 0.35.
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Fig. I. (a) Sketch of the flow situation. (b) Mapping of the physical space
onto the computational space. (c) "Four-color" scheme.
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Fig. 5. Free-surface vorticity for Re 50, Fr = 0.356, t = 5.02.
(1) Computed with the velocity components according to
,j-- Ovox - du/,, and (2) computed with formula (58) for (a) the
grid (157X135) and (b) the grid (313X269).
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